Update on California Motor Vehicle Fuel Programs

July 8, 2005

California Environmental Protection Agency

California's Air Quality Problem

- 24 million gasoline-powered vehicles
- *1,250,000 diesel-fueled vehicles and engines*
- Over 90% of Californians breathe unhealthy air

California's Vehicle Fuel Programs

Year				
Adopte	ed Gasoline	Diesel	Alternative Fuels	
1971	Reid Vapor Pressure			
	Bromine Number			
1975	Sulfur			
	Manganese/Phosphorus			
1976	Lead			
1981		Sulfur (SCAB)		
1982	Lead			
1988		Sulfur/Arom. HC		
1990	Phase 1 RFG			
			Clean Fuels/LEV	
1991	Phase 2 RFG			
	Wintertime Oxygenates			
1992			Commercial and	
			Certification Specs	
1994	Phase 2 RFG Predictive Model			
			LPG (amended)	
1998	Combustion Chamber Deposits (ame	ended)		
	Wintertime Oxygenates (amended)			
			LPG (amended)	
1999	Wintertime Oxygenates (amended)			
			Clean Fuels (amended)	
2000	Phase 3 RFG (eliminates MTBE)			
2003		Sulfur 15 ppm		

Summary of Fuels Program Benefits

		Emissions Reductions (tpd)				
Program	НС	NOx	PM	SOx	CO	Toxics
Diesel (1993) CaRFG1 (1992) CaRFG2 (1996) CaRFG3 (2003) Diesel (2003)	210 190 0.5	70 110 19 	20 0.6	80 30 4 6.4	 1300 	25% 40% 7%
Total (tpd)	400	199	21	120	1300	na

CaRFG3 Program

- Adopted in 1999 Implemented 2000
- Removed MTBE.
- CaRFG3 Predictive Model.
- Provide additional flexibility to use of ethanol.
- Required follow-up items
 - Commingling
 - Waiver
 - Permeation
 - Others

Ethanol

- California regulations allow oxygen levels to be anywhere between 0 and 3.5%, or ethanol between 0 and 10%
- Federal RFG oxygen content requirement has led to over 95% of CaRFG containing 5.7% ethanol
- Since 1999, ethanol consumption has increased from historical levels of about 10 million gal/yr to over 900 million gal/yr in 2004.
- Today, California consumes about 11% of the nation's gasoline and over 25% of the nation's ethanol production

Permeation

- Permeation is the migration of liquid fuel components through the soft portions of motor vehicle fuel systems
- Ethanol is known to increase permeation and increase evaporative emissions
- Joint CRC/ARB study found that ethanol in gasoline increased permeation by about 65%
- Second stage of test program in looking a LEVs, PZEVs, and flexible fueled vehicles with E85
- ARB staff is updating EMFAC to provide population specific permeation estimates

Predictive Model

- ARB staff committed to updating the Predictive Model about every 5 years, last updated in 1999
- ARB staff is holding public workshops to discuss with stakeholders potential changes to the CaRFG regulations
- Staff is waiting for the CRC E-65 test program to release its data and final report
 - 12 fuels tested in 12 late model vehicles

Predictive Model (continued)

- Predictive Model update is expected to go to the Board in late 2005 or early 2006
 - Must be approved by the Board
 - Subject to independent scientific peer review
 - Follow Administrative Procedures Act to ensure public participation
 - Must respond to all stakeholder comments

Alternative Fuels Specifications

Adopted in 1992 as part of the LEV program

- Fuel methanol (M-100, M-85)
- Fuel ethanol (E-100, E-85)
- Compressed natural gas (CNG)
- Liquefied petroleum gas (LPG)
- Hydrogen

Alternative Fuel Programs

- Ensure availability of clean alternative fuels for low-emission vehicles
- Recognize and encourage certification of low-emission alternative-fuel vehicles
- Most alternative fueled vehicles are in fleets and are not dedicated alternative fueled vehicles.

Compressed Natural Gas

Compressed Natural Gas Motor Vehicle Fuel Regulation

- Title 13, CCR, section 2292.5 adopted in 1992
- Compositional specifications
- Based on technology available at that time
- Provide engine manufacturers with a known fuel quality for designing engines
- Addressed fuel related engine performance problems and excess emissions
- More stringent than CPUC specifications
- No national motor vehicle specification

Current Motor Vehicle CNG Specifications

Methane (min.) 88 mol%

Ethane (max.) 6 mol%

C3+higher (max.) 3 mol%

Inert Gases 1.5 - 4.5 mol%

Other specs. to safeguard quality

Current Natural Gas Supply

- **88% of California supply meets CNG MV specifications
- Importation of LNG
 - One LNG terminal could supply 14% of CA supply
 - Potential to change the energy content of natural gas which could:
 - Increase emissions
 - Cause durability and performance problems for existing stationary and mobile source equipment

Fuel Quality and Emissions

- Test programs confirm that an increase in energy content will increase NOx emissions
 - Stationary sources
 - Mobile sources
- Current information indicates that NOx emission increases may be significant
- Additional tests need to be conducted to fully quantify the performance and emissions impacts

Joint Workshop on Gas Quality held on February 16th and 17th, 2005

- Hosted by CPUC, CEC, ARB, and DOGGR
- Explored potential issues involving natural gas quality, interchangeability, and related specifications affecting its use in California
- Helped provide a foundation for agencies to develop recommendations to resolve issues

Next Steps

- Continue to work with other state agencies & stakeholders
- Hold workshop on August 3rd, 2005 to discuss CNG strawman proposal
- As appropriate, bring proposed revisions to the CNG specifications to the Board for consideration including emissions and cost impacts

Liquefied Petroleum Gas

Liquefied Petroleum Gas Motor Vehicle Fuel Regulation

- Title 13, CCR, section 2292.6 adopted in 1992
- Compositional specifications
- Based on technology available at that time
- Provide engine manufacturers with a known fuel quality for designing engines
- Addressed fuel related engine performance problems and excess emissions
- No national motor vehicle specification

Adjustments to LPG Specification to ensure adequate supply

☞1997 amendments

- extend 10% propene specification to January 1999
- delay 5% propene specification by 2 years

☞1998 amendments

elimination of 5% propene specification

Current Motor Vehicle LPG Specifications

Propane 85.0 vol% (min.)

Propene 10.0 vol% (max.)

Butenes + higher 5.0 vol% (max.)

Volatility residue

evap. temp. 95% -37° F (max.) or

C4+ higher 0.5 vol% (max.)

Residual Matter

Residue on evap. of 100 ml 0.05 ml. (max.) or

Oil Stain Not present

Sulfur (max.) 120 ppmw

Other specs. to safeguard quality

Large Spark Ignition

Proposed exhaust emission standards will require a consistent and clean fuel to facilitate the use of advance fuel injection systems

Issues with LPG quality

- Inconsistent fuel quality
- Unacceptable residual heavy hydrocarbons

Proposed LPG Fuel Survey

- Sample throughout California
- Identify potential sources of contamination
 - Production
 - Distribution system

Possible Actions

- Revise LPG specifications for residual hydrocarbon
- Implement measures to minimize contamination

Biodiesel

Biodiesel Greenhouse Gas Benefits

- Based on lifecycle analysis
 - 1 gallon of diesel produces 28 lbs of CO₂
 - 1 gallon of B100 produces 6 lbs of CO₂ emissions
- Reduces greenhouse gas emissions
 - Biodiesel could displace about 1% of diesel fuel and reduce CO2 emissions by 300,000 tons

Other Biodiesel Benefits

- Reduces PM and toxic emissions
- Biodiesel can be used with no engine modification

Can Biodiesel be Used in CA?

Yes if:

- Meets ARB diesel regulations for sulfur and aromatics
- Meets Division of Measurement Standards specifications
 - Limits retail sales to B20 or less
 - B100 can be used in non retail or with a fuel variance

Biodiesel Emission Impacts

	B20	B100
НС	-21%	-67%
PM	-10%	-48%
CO	-11%	-48%
NOx	+2%	+10%

A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions, **Draft Technical Report**, **EPA420-P-02-001**, **October 2002**

Compatibility with Verified Diesel PM Controls

- Compatibility demonstration of B20 underway
 - Would allow verified devices to use B20

ARB Biodiesel Workgroup

- Established in 2004 to assist the ARB in determining the need to develop biodiesel specifications
- First meeting held in March 2004
- Second meeting held in June 2005

Coordination with the California Energy Commission

- Biodiesel considered a renewable fuel
- Supports energy diversity
- Determine biodiesel market feasibility
- Assess air quality impacts

Next Steps

Continue to work with ASTM, CEC, and industry to resolve remaining issues